
Scaling a Microsecond Counter
Method to correct inaccuracy

Tue, Jul 20, 1999

The PowerPC board includes the Hawk multifunction ASIC that includes a 32-bit 
counter that is meant to count in units of microseconds. But the counter uses another register 
as a prescaler, which for the case of a 66.67 MHz bus clock, is loaded with an 8-bit value of 66. 
This causes the counter to increment about 1% faster than it would if it were a true 
microsecond counter. But we need a more accurate microsecond counter to time-stamp 
plotting data for the Acnet plotting protocol FTPMAN. The front end captures the time of 
Tevatron clock events as well as the times of A/D digitizations, so that we can accurately 
time-stamp all data points in the 64K-byte circular memory buffer on the Analog IP board. 
The current software assumes the existence of a crystal-accurate megahertz clock, so we need 
to provide a function that can return times in such units.

Assuming that the above frequencies are the ones we will use, we need to multiply the 
32-bit counter value we get by a fraction like 0.99. But simply doing that and taking the low 
32 bits of the product is not enough, because there would be a 40-second gap as the 32-bit 
counter of approximate microseconds rolls over. (This is because the period of a 32-bit 
microsecond counter is about 4000 seconds.) In order to eliminate the gap, we need to 
manage more than 32 bits of precision in the counter.

We can use an overflow counter that is incremented whenever the 32-bit raw value 
rolls over. The logic that performs this "carry" operation should be done at a task level at the 
lowest priority of any task that needs this microsecond service. It merely checks when a 
reading of the counter register is less— in an unsigned sense—than the previous reading. 
This might be done at 15 Hz, or whatever is convenient.

The function that returns the scaled microseconds units first builds a 64-bit counter 
value by concatenating the overflow counter and the live counter register. It needs to also 
have access to the previous value of the counter register maintained by the usual carry logic. 
The logic proceeds as follows: Read the overflow counter as the high-order part of the 64-bit 
counter value. Read the CTR32 register as the low-order half of the 64-bit counter value. If 
this reading is less (unsigned) than the previous value, increment the high-order half of the 
64-bit result by one.

Apply the fractional correction to the 64-bit value using the appropriate multiply and 
add instructions needed. Return the 32-bit microsecond result. The following diagram depicts 
the steps for scaling that are required:

rx

rw

rz

ry

rt

rw

rv (n.u.)

(n.u.)

(n.u.) (n.u.)



Here, rz holds the constant of (66/66.67), approximately 0.99, scaled at 232. The most 
significant half of the 64-bit counter value is in rx; the least significant half is in ry. Multiply 
ry and rz and store the most significant half of the result in rw. Multiply rz by rx and store 
the least significant half in rt. Return (rw + rt) as the result. Note that the product of ry and 
rz must be the unsigned instruction, as both ry and rz are unsigned values. The PowerPC 
instructions are as follows:

mulhwu rw,ry,rz #compute upper half of product
mullw rt,rz,rx #compute lower half of product (rx is likely < rz)
add rw,rw,rt #sum upper half of 1st product with lower half of 2nd

The 32-bit result is in rw after the add instruction. The result should not exhibit the 40-
second gap every hour or so as described earlier. The roll-over problem is handled by the 
routine when it applies, but the overflow counter must not be modified by the function, even 
if the occurrence of a rollover is detected, since it may be invoked from a high priority task. 
Only the low priority task should modify the overflow counter.


